metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Anna M. M. Meij, Alfred Muller and Andreas Roodt*

Department of Chemistry and Biochemistry, Rand Afrikaans University, PO Box 524, Johannesburg 2006, South Africa

Correspondence e-mail: aroo@na.rau.ac.za

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.042 wR factor = 0.105 Data-to-parameter ratio = 22.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

trans-Dichlorobis(cyclohexyldiphenylphosphine)palladium(II)

As part of a systematic investigation for a number of Pd^{II} complexes in order to find correlations between molecular structure and chemical behaviour, crystals of the title compound, *trans*-[PdCl₂(PPh₂Cy)₂] or [PdCl₂(C₁₈H₂₁P)₂], were prepared. The Pd atom is located on an inversion cneter. Selected geometrical parameters are: Pd-P 2.3256 (10) and Pd-Cl 2.3007 (11) Å, and P-Pd-Cl 91.38 (4)°. The effective and Tolman cone angles for the PPh₂Cy ligand were determined as 151.0 and 154.6°, respectively.

Comment

The title compound, trans-[PdCl₂(PPh₂Cy)₂], (I), crystallizes in the monoclinic space group $P2_1/n$, with the Pd atom on an inversion centre and each pair of equivalent ligands in a mutually trans orientation. The geometry is, therefore, square planar and all the angles in the coordination polyhedron are very close to the ideal value of 90° , with P-Pd-Cl = 91.38 (4)° and P-Pd-Clⁱ = 88.62 (4)° [see Table 1; symmetry code: (i) -x, -y, -z]. The P-Pd-Pⁱ and Cl-Pd-Clⁱ angles are 180°, as required by the crystallographic symmetry. The bond distance P-C11 of 1.837 (3) Å (cyclohexyl moiety) is somewhat longer than the bond distances for the phenyl moieties, where P-C21 = 1.817(3) Å and P-C31 =1.819 (3) Å. The C–C bond distances in the phenyl rings agree well with the expected value. The average C-C bond distances for the C21-C26 and C31-C36 phenyl moieties are 1.395 (5) and 1.378 (6) Å, respectively. The average C-Cbond distance for the cyclohexyl moiety (C11-C16) is 1.494 (5) Å. The C-C-C angles in the phenyl rings (sp^2)

hybridization) are all normal, with an average value of 119.9 (5)°, while the average ring angle for the cyclohexyl (Cy) ring (sp^3 hybridization) is 113.3 (5)°. The cyclohexyl ring (ring 1) has a normal chair conformation, with torsion angles ranging from 47.1 (5) to 51.9 (5)°. The effective (θ_E ; Otto, 2001) and Tolman cone angles (θ_T ; Tolman, 1977) for the PPh₂Cy ligand were determined as 151.0 and 154.6°, respectively, using the actual Pd—P bond length and a distance of 2.28 Å according to definition. A van der Waals radius of 1.2 Å for hydrogen and C—H bond distances of 0.97 Å for CH₂ and 0.93 Å for CH were used.

Received 22 November 2002 Accepted 11 December 2002 Online 24 December 2002

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. The H atoms have been omitted for clarity.

In Table 2, the title compound is compared with other closely related Pd^{II} complexes from the literature containing two chloro and two tertiary phosphine ligands in a trans geometry. Compound (I), having a Pd-Cl bond length of 2.3007 (11) Å and a Pd-P bond length of 2.3256 (10) Å, fits well into the typical range for complexes of this kind.

Experimental

Dichloro(1,5-cyclooctadiene)palladium(II), [PdCl₂(COD)], was prepared according to the literature procedure of Drew & Doyle (1990). Diphenylcyclohexylphosphine (19.7 mg, 0.076 mmol) was added to a solution of [PdCl₂(COD)] (10 mg, 0.035 mmol) in dichloromethane (10 ml), and slow evaporation of the solvent gave yellow crystals of trans-[PdCl₂(PPh₂Cy)₂] suitable for X-ray analysis.

Crystal data

~	
$[PdCl_2(C_{18}H_{21}P)_2]$	$D_x = 1.373 \text{ Mg m}^{-3}$
$M_r = 713.98$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 204
a = 9.797 (5) Å	reflections
b = 12.552(5) Å	$\theta = 3-23^{\circ}$
c = 14.087 (5) Å	$\mu = 0.81 \text{ mm}^{-1}$
$\beta = 94.357 \ (5)^{\circ}$	T = 293 (2) K
$V = 1727.3 (13) \text{ Å}^3$	Cuboid, yellow
<i>Z</i> = 2	$0.20 \times 0.19 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer	4236 independent reflections 2604 reflections with $L > 2\sigma(L)$
() scans	$R_{int} = 0.050$
Absorption correction: multi-scan	$\theta_{\text{max}} = 28.3^{\circ}$
(SADABS: Bruker 1998)	$h = -10 \rightarrow 13$
$T_{\rm min} = 0.86, T_{\rm max} = 0.92$	$k = -15 \rightarrow 16$
11 930 measured reflections	$l = -15 \rightarrow 18$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0541P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.042$	+ 0.0819P]
$wR(F^2) = 0.106$	where $P = (F_o^2 + 2F_c^2)/3$
S = 0.95	$(\Delta/\sigma)_{\rm max} = 0.007$
4236 reflections	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
187 parameters	$\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Pd-Cl	2.3007 (11)	P-C21	1.817 (3)
Pd-P	2.3256 (10)	P-C11	1.837 (3)
P-C31	1.819 (3)		
Cl-Pd-P	91.38 (4)	C21-P-Pd	103.79 (11)
C31–P–Pd	117.68 (11)	C11-P-Pd	117.12 (11)

Table 2

Comparative geometrical	parameters for selected trans- $[PdCl_2(L)_2]$ (L =
tertiary phosphine ligand) complexes.

L	Pd-L (Å)	Pd-Cl (Å)	Notes
PPh ₃	2.337 (1)	2.290(1)	i
PPh ₃	2.345 (1)	2.296 (1)	ii
	2.353 (1)	2.281 (1)	
PCv ₃	2.3628 (9)	2.3012 (9)	iii
PPh('Bu) ₂	2.398 (2)	2.301 (2)	iv
PPh ₂ Cy	2.3257 (9)	2.2995 (9)	v
$PPh_2(p-(^tBuNO)Ph)$	2.3298 (6)	2.2865 (7)	vi
pphqH ₂ ^{<i>a</i>}	2.343 (3)	2.302 (3)	vii
pphqMe ₂ ^b	2.337 (1)	2.307 (1)	vii
PPh ₂ CHCO ₂ H)	2.326 (1)	2.305 (1)	viii
$PPh_2(NC_5H_{10})$	2.324 (2)	2.289 (2)	ix

^{\dagger} Notes: Cy is cyclohexyl., (a) pphqH₂ = p-hydroquinonylphosphine, (b) pphqMe₂ = phydroquinonyldimethyletherphosphine; (i) Ferguson et al. (1982); (ii) Kitano et al. (1983); (iii) Grushin et al. (1994); (iv) DiMeglio et al. (1990); (v) this work; (vi) Leznoff et al. (1999); (vii) Sembiring et al. (1995); (viii) Edwards et al. (1998); (ix) Burrow et al. (1994).

H atoms were treated as riding, with C-H = 0.93, 0.97 and 0.98 Å for those on phenyl, secondary and tertiary C atoms, respectively.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandendurg & Brendt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Financial assistance from the Rand Afrikaans University is gratefully acknowledged.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Brandendurg, K. & Brendt, M. (2001). DIAMOND. Version 2.1. Crystal Impact GmbH, Bonn, Germany.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrow, R. A., Farrar, D. H. & Honeyman, C. H. (1994). Acta Cryst. C50, 681-683

DiMeglio, C. M., Luck, L. A., Rithner, C. D., Rheingold, A. L., Elcesser, W. L., Hubbard, J. L. & Bushweller, C. H. (1990). J. Phys. Chem. 94, 6255-6263. Drew, D. & Doyle, J. R. (1990). Inorg. Synth. 28, 346.

Edwards, D. A., Mahon, M. F. & Paget, T. J. (1998). Polyhedron, 17, 4121-4130. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679-2681.

Grushin, V. V., Bensimon, C. & Alper, H. (1994). Inorg. Chem. 33, 4804-4806. Kitano, Y., Kinoshita, Y., Nakamura, R. & Ashida, T. (1983). Acta Cryst. C39, 1015-1017

Leznoff, D. B., Rancurel, C., Sutter, J., Rettig, S. J., Pink, M. & Kahn, O. (1999). Organometallics, 18, 5097-5102.

Otto, S. (2001). Acta Cryst. C57, 793-795.

Sembiring, S. B., Colbran, S. B., Bishop, R., Craig, D. C. & Rae, A. D. (1995). Inorg. Chim. Acta, 228, 109-117.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Tolman, C. A. (1977). Chem. Rev. 77, 313-348.